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ABSTRACT: 
 
The effect of electromagnetic stiffness and damping on torsional vibration has 
been evaluated, and an approximate method for calculating the shift in torsional 
natural frequency due to em effects is presented. Systems with “very soft” 
couplings can be extremely sensitive to the em effect. 
 
INTRODUCTION: 
 

AC polyphase induction motors produce rotating electromagnetic fields in the 
stator windings, which in turn induce currents in the rotor bars and thereby cause 
the rotor to turn and carry load under steady operation. If the rotor has a torsional 
vibration superimposed over the steady rotation, the same electromagnetic fields 
across the air gap between rotor bars and stator windings can produce torques 
acting on the rotor which can be considered to act as torsional springs and 
dampers. These additional electromagnetic (em) effects are not usually included 
in standard torsional vibration analysis, as no simple methods for estimating their 
magnitudes have been available to date. 
 
Such unsteady em effects have nevertheless been extensively studied in the 
past by direct numerical integration of the differential equations representing 
stator and rotor currents and their mutually induced stator and rotor fields. Past 
studies have typically included startup of drive systems and estimation of the 
resulting transient motor torques. Jordan et al [1], [2], have developed the 
complete em field equations, which were then solved numerically showing 
dynamical effects such as limit cycles and drive instabilities (“negative” damping). 
Further work by Cierniak et al [3] extended this type of study to consider the 
effect of variable speed drives on dynamic current and slip characteristics. 
 
As important as these past works are, the direct em effects on torsional 
vibration in a drive train have not been extensively explored. Most recently, 
Knop [4] presented a simplified approach to solving the em field equations by a 
“linearization” technique, and then showed how one could gain a better 
understanding of the importance of em effects by first referring to simpler mass – 
elastic models. 
 
As an example, Figure 1 shows an idealized two-mass torsional model of a 
compressor and motor rotor, with the addition of an em “spring” and “damper” 
acting between the rotor and stator. 
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As is well known, the additional spring and damper add a second vibrational 
mode, so that the system now has two natural frequencies, one above and one 
below the single mode frequency. This effect was described by Knop [4] in a 
figure similar to Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An idealized two-mass model of a motor-compressor drive, with an 
additional em spring and damper between the rotor and stator. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Torsional natural frequencies of a two-mass model: curve (a), single 
frequency, and no em effect; curves (b) including em effects, with the higher 

natural frequency possibly raised into the system operating range. 
 

Knop [4] explained that since coupling stiffness's would normally be chosen to 
place the coupling mode below the operating speed range (heavy line a in Figure 
2), the additional em spring could well raise the higher natural frequency into the 
operating range (the right hand dashed lines b in Figure 2). In Figure 3 (redrawn 
from Knop), Knop showed that for a coupling with stiffness lower than that of the 
em spring, kM kC , the natural frequency could be as much as 1.5 times higher 
than normally estimated!  
 
The numerical examples given by Knop (ratio of rotor to compressor inertias less 
than 1.0; ratio of em stiffness to coupling stiffness greater than 1.0) are found in 
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many European compressor-motor drivelines, but are not common in many North 
American installations. For example in a GMRC 2011 Case Study [5], the ratio of 
motor to compressor inertia was approximately 1.85 and the ratio of em spring to 
coupling stiffness was approximately 0.8. Extending the values in Figure 3, the 
natural frequency in this case would be raised by approximately 6%.  
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Figure 3. The effect of including an em spring in the two-mass model (neglecting 

damping, and taking kM as constant), taken from [4]. 
 
It must be emphasized that the above remarks are based on studying a simplified 
two-mass model, with a constant value of em spring stiffness and no accounting 
of damping effects. In the following we present a way to develop estimates of em 
spring and damping magnitudes, and consider their effect on torsional vibration 
response for a range of typical North American motor-compressor installations. 
 
ESTIMATING ELECTROMAGNETIC SPRING AND DAMPING VALUES: 
 
The earlier reference cited, Knop [4], suggested that by linearization of the em 
field equations, analytical expressions could be generated for em spring and 
damping values. While this would not allow study of certain dynamical aspects 
(limit cycles, “negative” damping) described by Jordan [2], practical estimations 
of torsional response in a wide range of driveline installations might still be made. 
 
Knop’s Equations (5), (6) for the em spring stiffness kM , and damping dM  are: 
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kM   = (MSt /s){(2TL) / [1 + (TL)

2] },…Eq’n (1), 
 

dM  = (MSt /s){ 1 / [1 + (TL)
2] }….Eq’n (2). 

 
where:  = frequency of the superimposed torsional vibration,
  s   = electrical supply frequency, 
  MSt = a motor circuit constant with dimensions of torque, 
  TL   = a motor circuit electrical constant with units of time. 

 
However, no further information was given in [4] regarding how the expressions 
MSt and TL could be evaluated, nor was further information made available to us. 
Knop was careful to point out that these equations could not produce “negative 
damping”, and strictly speaking would be valid only for motors with negligible 
stator winding resistance. Knop also showed results for a particular case by 
reference once again to full numerical evaluation of the differential equations. 
 
To uncover the meaning and get estimates for the variables MSt and TL in Eq’ns 
(1) and (2), we have referred to the fundamental analysis and equations in 
Jordan et al [1], [2].  We have also carried out a further linearization analysis of 
expressions for spring and damping effects used in their studies. This involves 
algebraic manipulation not worthy of inclusion here. A brief outline of this analysis 
is given in the Appendix, and interested parties should contact the lead Author for 
details. 
 
As outlined in the Appendix, we have derived the following results for MSt and TL: 
 

with;  TR =  rated (full load) motor torque, 
      TB =  breakdown motor torque, 

    sR  =  slip at rated load, 
then: TL  z (1s){1/(2sR)}{ TR / TB }….Eq’n (3), and 

 MSt /(sTL)  z (# stator poles)( TB )….Eq’n (4). 
Using Equations (3), (4) in Equations (1), (2) will allow ready estimations to be 
made of the em effect on torsional vibration in a range of drive installations. 
 
With the further substitution of: x = (TL) , Eq’ns (1) and (2) become, 

 
kM   = (# stator poles)( TB ){ x

2 / [1 + x2] },…Eq’n (5), and  
 

dM  = kM  / (TL)  = kM (TL) / (x)2 ….Eq’n (6). 
 
While the main motor torque characteristics TB , TR  and sR are tabulated and 
readily available, the time constant TL  requires a further evaluation of Eq’n (3). 
Figure 4 shows estimates made using Eq’n (3) for two types of motors, with time 
constants TL ranging from 0.07 to 0.14 seconds in the range of 500 to 1,500 kW. 
With torsional frequencies, of interest from 10 – 60 Hz, the variable x2 = (TL)

2 
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can vary from approximately 20 to 2,000, but  the quantity [ x2/(1+x2) ] in Eq’n (5) 
is  always within a few percent of 1.0 and in such cases can be ignored. However 
for very soft couplings between large motor-compressor setups, the frequency 
effect on kM  shown in Eq’n 5 can be significant and should not be neglected. 
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Figure 4. Estimated time constant TL  for typical induction motors; data taken 
from published information [6], [7]. The dashed line is for reference only. 

 
Before study of some previous installations, we once again consider the simple 
two-mass model shown in Figure 1. While it is clear that em damping must 
always be present along with an em spring, in most cases damping does not 
strongly influence estimates of coupling mode natural frequencies, and so can be 
neglected in this simple model. The calculation of natural frequencies for the two-
mass model is made more difficult with a frequency-dependent em spring, but 
can be reduced to finding the roots of a quadratic equation whose constants are 
functions of  MSt  and  TL  in addition to the constants without an em spring.    
 
As an example; in the previously cited Case Study [5], taking the value of JM/JC 
of 1.85 as before, with the time constant TL approximately = 0.12 sec., MSt /(sTL) 
is approximately = 99 kNm, the coupling stiffness kC = 124 kNm/rad, so that the 
abscissa in Figure 5 is approximately = 0.8. Figure 5 shows that for this case, the 
first natural frequency is once again increased by about 7% as in Figure 3, but 
now the em spring stiffness has been evaluated using Eq'n (5). Subsequent field 
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measurements on this installation confirmed that the 1st TNF was about 8% 
higher than predicted by the original TVA, which did not include an em spring. 
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Figure 5. Results for the higher torsional natural frequency of the two-mass 
model, compared to that with no em effect, using Eq'n (5) to evaluate kM . 

 
 
CASE STUDIES: 
 
Equations (5) and (6) have been used to make estimates of kM and dM  for a 
series of past torsional vibration studies in order to determine how important em 
effects may be. A representative sample of these studies is shown in Table 1, 
which summarizes the results for three types of installation: 
 
1. Drive A; high power (5,000 HP), soft (rubber) coupling, (450-900 RPM), 
2. Drive B; mid-range power (1,250 HP), steel spring coupling, (1,200 RPM), 
3. Drive C; low power (450 HP), stiff coupling, mid-speed (720 RPM). 
 

(a) Results of em effects on natural frequency (coupling mode). 
 
Table 1 indicates that for systems like C, that is, kM << kC , em effects are 
relatively unimportant. On the other hand systems like A,  kM  >> kC , the coupling 
mode frequency can be as much as 90% higher, much as predicted by Knop [4]. 
The variable stiffness characteristics of rubber couplings are a particularly 
important influence on the wide range of frequency estimates for this type of 
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system. Intermediate systems like B are modestly affected. These results are 
also shown in Figure 6, where kM  in the abscissa is calculated from Eq’n (5). 
 

 Drive A Drive B Drive C 
Compressor Ariel JGC/6 Ariel JGK/4 Cameron MI-164 

speed range-RPM 450-900 1185-1192 716 

    
Coupling soft; rubber-in shear steel-spring stiff: disc pack 

 cold nominal Warm   

kC – kNm/rad 136 106 72 124 15,117 

1st TNF, ω0 - Hz 5.58 4.93 4.04 14.75 77.98 
    

Motor Toshiba Reliance Westinghouse 
 rated power - kW 3,728 900 336 
line frequency - Hz 60 60 60 

# poles 8 6 10 
rated torque, TR - Nm 40,230 7,210 4,474 

rated slip, sR - % 1.67 0.67 0.56 
brk.dwn torq, TB - Nm 88,507 16,593 8,948 
 
time const, TL – sec. 0.036 0.086 0.118 

xE = (ωETL)* 3.40 3.40 3.40 10.8 8.88 
xE

2 / (1 + xE
2) 0.92 0.92 0.92 0.991 0.987 

kM – kNm / rad 651.8 651.8 651.8 98.7 88.4 
dM – kNms / rad 2.03 2.03 2.03 0.07 0.133 

kM / kC 4.79 6.15 9.05 0.80 0.0058 
Ω / ω0 1.55 1.66 1.86 1.089 1.002 

*  main excitation harmonic assumed to be 1 x run speed; ωE = 94.25 rad/s for drive A 
 
Table 1. A summary of em effects on some previous torsional vibration studies. 

The effect is pronounced for higher power installations with ultra-soft rubber 
couplings, while lower power drive trains with torsionally-stiff couplings are not 

greatly affected. 
 
Table 2 shows a summary of the torsional natural frequencies compared to the 
orders of run speed. As previously noted the largest shift in torsional natural 
frequency was for the Ariel JGC/6 with a very soft rubber coupling; the natural 
frequency was up to 1.86 times that without the em effects in the model.  For this 
case, the torsional natural frequency was shifted enough to result in resonance at 
1 x  shaft speed at the lower end of the run speed range.  
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Figure 6. Representative em effects for the three different types of drives 

described in Table 1. The inertia ratio lines are taken from the two-mass model 
and are shown for reference only. 

 
 

predicted natural 
frequencies (Hz) 

orders of run speed at 

450 rpm 900 rpm 

without em stiffness 

4.04 (coupling mode) 0.54 0.27 

with em stiffness 

2.61 (rigid body mode) 0.35 0.17 

7.51 (coupling mode) 1.00 0.50 
 

Table 2. A summary of em effects on the predicted torsional natural frequencies 
of drive A (soft rubber coupling). The addition of the em stiffness results in the 

coupling mode being resonant at 1 x run speed. 
 
(b) Results of em effects on system stress and torque levels. 
 

For each of the previous design cases A, B, C, the predicted torques, stress 
design factors, and coupling heat loads did not change to any significant degree 
during design operating conditions.  This is because, although the system is now 
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resonant with the coupling mode at run speed, there is very little 1 x torque 
demand from the compressor due to the staging and double acting loading for 
the given design operating conditions.  However, if single acting conditions are 
considered (possibly as a result of a cylinder valve failure), the coupling vibratory 
torques and heat loads are predicted to be much higher when including em 
effects.  In this case, the coupling heat load is approaching the manufacturer’s 
limit during the upset conditions. 
 
Table 3 shows a comparison of the predicted torques, design factors and heat 
loads. The added electromagnetic stiffness does have the potential to cause a 
resonant condition with resulting failures of driveline components during upset 
operating conditions. At this point, the Authors are not aware of any actual cases 
where that has occurred. 
 
 

 
compressor 

vibratory 
torque; lbf-in 

coupling 
vibratory 

torque; lbf-in 

coupling 
heat load 

(HP) 

motor shaft 
stress design 
 (Bagci) factor 

design operating conditions 

no em effect 516,900 28,720 0.77 51.5 

with em effect 516,730 27,090 0.71 54.2 

upset operating conditions (single acting cylinders) 

no em effect 512,440 77,500 3.19 11.3 

with em effect 513,300 125,980 4.67 15.3 
 

Table 3. A summary of em effects on the predicted response of drive A (soft 
rubber coupling). In this case, the addition of the em stiffness and damping was 

insignificant for the design operating conditions, but important for upset 
conditions (particularly on the coupling vibratory torques and heat load). 

 
CONCLUSIONS: 
 
The electromagnetic stiffness and damping effects on torsional vibration can be 
estimated by Equations (5) and (6). The predictions agree reasonably well with 
field measurements in a few cases known to us. 
 
Systems with “very soft” couplings can be extremely sensitive to the em effect, 
particularly during upset conditions. Steel spring couplings may have their 
coupling mode frequency shifted upward by 8-10%, while “stiff” couplings are not 
significantly affected. 
 
Reasonable preliminary estimates of the importance of em effects on a particular 
system can be made by taking the following steps: 
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1. Combine the inertias on either side of the coupling to form a simple two-
mass model and note the inertia ratio. 

2. Evaluate the abscissa in Figure 5, that is; # poles x breakdown torque / 
coupling stiffness. 

3. Enter these values on Figure 6 to find how much the natural frequency 
might be affected. This is a very conservative estimate; very soft couplings 
might have much greater frequency shifts and in those cases, calculate kM  

from Eq’n (5). 
 
Further field measurement of the coupling mode natural frequency for fixed 
speed induction motors is needed to confirm the validity of the approach used to 
develop Equations (5) and (6). Such field work requires advanced measurement 
and data processing techniques. The Authors plan to carry out such work, which 
will be reported in a future paper. 
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APPENDIX: 
 
List of symbols:       =  angular frequency of torsional vibration   
   S  = line frequency 
   Z    = S    
   p    = no. of pole pairs; i.e. 2p is the no. of poles 
   L1    = rotor leakage inductance 
   L2    = stator leakage inductance 
   IM   = rotor current 
   R1   = stator resistance (per phase) 
   R2  = rotor resistance (per phase) 
       = R1 / SL1 
   = R2 /SL2 
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       = 1 - L12L21/L1L2 = total scattering coefficient 
   a    = 2(1+2) 
   b    = 2(--) 
   c    = (+)2 + (-2) 
   d    = ( +2s) 
   s    = slip 
   sR   = slip at rated torque 
   = TB / TR = breakdown torque / rated torque 
 
Eq'n (50), Jordan et al [1];  
 

ce = MZ{ N1/D1 + N2/D2 }, with M = [3p2L1(1-)I2M ]/[2(1+


N1 = -(1+Z)[Z(1+Z)] + [Z + (1+Z)]. D1 = [- Z(1 + Z)]2 + [Z + (1+Z)]2. 
 
N2 and D2 have similar algebraic expressions, not shown here for brevity. Linearization 
involves of expansion of Z, limited to order (Z2) with the result; 
 

    ce = MZ2( + ){2a / [a2 + Z2(2ac-b2)]}....Eq'n (A1). 
 
The "electromagnetic" damping,  de , is taken from [1], Eq'n (51), and as with ce ; 

 
de = (M/s){ 2ad / [a2 + Z2(2ac-b2)] }....Eq'n (A2), 

 
with the constants a, b, c, d being algebraic combinations of and


From Knop, kM / dM = 2TL , so that  kM / dM = ce / de = 2[(+2)/ (ds)] = 2TL. 
 

where d =(1+2). Since 2  1, from [1] we get; 
 

TL = (/s...Eq'n (A3). 
 

Further manipulation of Eq'n (A1) results in MSt = 2M/ Eq'n (A4). 
 

To finally obtain useful expressions for MSt and / from [1], Eq'n (50), 
 

M = [3p2L1(1-)I2M ]/[2(1+also, Eq'n (26), TB  =   (3p(1-)L1I
2

M)/2
  

so that with we get   MSt/sTL  = 2 pTB = # poles x TB ... Eq'n (A5). 
 

To evaluate / : from Jordan [2], Eq'n (36); the rated motor torque, TR is given as 
  

 TR  =  (3p(1-)L1I
2

M)() / [(-sR)2 + ( +sR)2]. 
 

 So TB / TR =  = [(sR)2 + 2] / 2sR Solving; (neg. root) = (sR)(1/22 – 1/84 +  …), 
 

or, / ≈ 1/2sR = (1/2sR)( TR / TB) = TLs ….Eq’n (A6). 
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