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Project Motivation 

How much power 
does my 

compressor need? 
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Compressor Performance Calculation 

Why Estimated Total Load? 
- Compression (ideal) power 
- Mechanical Efficiency 
- Manifold (bottle) power loss 
- Orifice power loss 
- Other system loss  

How do you calculate the 
unknown power losses? 
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Compressor Performance Calculation 

How much, assume 1%, 2%?  
Is it accurate? 

Unknown Power Losses are 
estimated by the pressure drop 
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Pressure Drop Calculation… easy, right? 

OK, but…does this 
work for my recip 
compressor? 
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Challenges to Industry 

• Manifolds (pulsation 
bottles) have complicated 
geometry. K-factors are not 
published. 
 
 
 
 

• Recip compressors create 
high flow fluctuations. 

• How to relate pressure drop to power loss?  
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How important is power loss?  

Inaccurate power calculation effects performance and 
reliability (3% to 12% error in results) 

RED = Unsafe 

YELLOW = Conditionally Safe 

GREEN = Safe 

Suction Pressure (psia) 
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Consequences: 
 Driver size inadequate  
 Unable to meet 

contract flow 
 Reliability (rod load, 

reversal, and discharge 
temperature) 

 Inefficient operation 

Design Point 
move to 
Unsafe Zone 
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Overall Project Objectives 

1. Develop a methodology to predict the mean and pulsating power 
losses across Reciprocating Compressor Manifolds (bottles).  

2. Validate the methodology via experimental means, either from: 

 Measurements of actual recip. compressor in the field, or 

 Scale-down test rig involving a custom-design bottle and a Pulse-
generator. 

3. Ultimate Goal is to: 

 Recommend a standard methodology to quantify the pulsating 
flow power loss. 

 Come up with adjustment factor(s) to be applied to the mean 
pressure drop coefficient (K) in the presence of pulsating flow. 
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Overall Project Objectives 

1. Develop a methodology to predict the mean and pulsating power 
losses across Reciprocating Compressor Manifolds (bottles).  

2. Validate the methodology via experimental means, either from: 

 Measurements of actual recip. compressor in the field, or 

 Scale-down test rig involving a custom-design bottle and a Pulse-
generator. 

3. Ultimate Goal is to: 

 Recommend a standard methodology to quantify the pulsating 
power loss. 

 Come up with adjustment factor(s) to be applied to the mean 
pressure drop coefficient (K) in the presence of pulsating flow. 

 

Completed 2013 

Focus of this presentation 
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Outline 

1. Test Program 
2. Measurements and Results 
3. Key Findings 
4. Next Steps 
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Test Setup at TCPL’s GDTF in Didsbury, Alberta 

Pipeline quality gas 

Nozzle 
Bank 
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Pulse Generator 

Pulsations will be created by a hydraulically driven 
rotating paddle 
• Not a recip compressor 
• Operate at 300 to 1200 

rpm.  
• Double acting 
• Pulse amplitude 1% to 2% 

line pressure 
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Test Setup Details 

Configuration A: Bottle Upstream, Orifice Downstream 

Configuration B: Orifice Upstream, Bottle Downstream 
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Custom Bottle Design (donated by Peerless Mfg.) 
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End Treatments 

2” x 3”Diffuser 

Taper 

Normal 
(Square) 
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Square End Treatment 
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Diffuser End Treatment 
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Photos of Configuration A Setup 
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Sonic Nozzles Bank 

Pulse Generator 
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Static P & T Transducers 
(Upstream) 

Pair of Dynamic P Transducers 
(1.5 m apart) 

Kulite P Transducers 
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Pair of Dynamic P Transducers 
(1.5 m apart) 

Kulite P Transducers 
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Rosemount 
Differential P 
Transducer 
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Pair of Dynamic P Transducers 
(1.5 m apart) 

Rosemount 
Differential P 
Transducer 
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Pair of Dynamic P Transducers 
(1.5 m apart) 

Kulite P Transducers 

Static P & T Transducers 
(Downstream) 
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Photos of Configuration B Setup 
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Taper Diffuser 

Β = 0.5 

Β = 0.7 
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Example of Pulsating Pressure Measurements 
(Across the Bottle) 
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Example of 1st Harmonic                     Mapping 
(Configuration A) 
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Example of 1st Harmonic                     Mapping 
(Configuration B) 
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Test Results 
(Configuration A) 
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Configuration A Test Scope 

Test
Number of 

Sonic Nozzles
End Treatments Orifice β Hole(s)

1 3 and 6 Square/Square 1 -

1a 3 and 6 Square/Square 0.5 Single

1b 3 and 6 Square/Square 0.5 Multiple

1c 3 and 6 Square/Square 0.7 Single

1d 3 and 6 Square/Square 0.7 Multiple

2 3 and 6 Square/Diffuser 0.5 Single

3 3 and 6 Taper/Diffuser 0.5 Single

4 3 and 6 Taper/Square 0.5 Single

4a High flow Taper/Square O.7 Single

Configuration A Test Scope

For each of the sub-configuration and flow rate, a total of  10 tests were conducted 
at the following frequencies: 0, 11, 13, 15, 17, 22, 27, 31, 35, and 41 Hz. 
(Total for Configuration A = 180 Tests). 
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Normalized Pulsating Power Loss (Bottle) 
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Normalized Velocity Oscillation at Bottle Flange or Orifice Plate (urms/U)

Square/Square  Orifice, Beta = 0.5, Single Hole

Square/Square  Orifice, Beta = 0.5, Multiple Holes

Square/Square  Orifice, Beta = 0.7, Single Hole

Square/Square  Orifice, Beta = 0.7, Multiple Holes

Square/Square No Orifice

Square/Diffuser Orifice, Beta = 0.5, Single Hole

Taper/Square  Orifice, Beta = 0.5, Single Hole

Taper/Diffuser Orifice, Beta = 0.5, Single Hole

Configuration A:
Bottle

TGP St54 (Original Bottles)

TGP St54 (New Bottles)
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Normalized Velocity Oscillation urms/U 

 TGP Station 54: 8350 HP compressor, 6 throw  
• urms/U=0.7-1.3 

 Gathering compressor:  1775 HP, 4 throw  
• urms/U=0.75 

  Vapour Recovery Compressor: 1200 HP, 6 throw  
• urms/U=0.4 

 Test Setup: Hydraulic driven rotating paddle,  2 HP 
  urms/U=0.3 max 

Current test setup representative of lower power/throw 
applications.  
Pulse Generator modifications could generate urms/U=0.6 
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Normalized Pulsating Power Loss (Orifice) 
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Normalized Velocity Oscillation at Bottle Flange or Orifice Plate (urms/U)

Square/Square  Orifice, Beta = 0.5, Single Hole

Square/Square  Orifice, Beta = 0.5, Multiple Holes

Square/Square  Orifice, Beta = 0.7, Single Hole

Square/Square  Orifice, Beta = 0.7, Multiple Holes

Square/Diffuser Orifice, Beta = 0.5, Single Hole

Taper/Square  Orifice, Beta = 0.5, Single Hole

Taper/Diffuser Orifice, Beta = 0.5, Single Hole

Configuration A:
Orifices

Beta = 0.5 

Beta = 0.7 
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Taper/Square  Orifice, Beta = 0.5, Single Hole
Taper/Diffuser Orifice, Beta = 0.5, Single Hole

Configuration A:
Bottle

Normalized Mean Flow Pressure Loss Coefficient 
(Bottle) – zoomed in 
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Theoretical K Factor for the Bottle with Square End 
Treatments 

K1 

K2 
K3 

K4 

K5 

NPS 4, ID (d2) 4.026 in

Choke Tube ID (d1) 1.939 in

Vessel ID (D) 14.29 in

Choke tube (L) 26 in

Element Local K-Factor
K-Factor 

(Ref NPS4)

Entrance to Bottle, K1 0.85 0.85

Emtrance to Choke Tube (square), K2 0.49 9.11

Choke Tube (f=0.014), K3 0.19 3.49

Choke Tube Exit (square), K4 1.00 18.59

Entrance from Bottle to NPS4, K5 0.42 0.42

Sum (Overall K) 32.45

Measured K Factor 25

Bottle Theoretical K Coefficient

K is 21% lower than expected.  
Why? 
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Thoughts about why the Measured K Factor for the Bottle 
is Lower than Theoretical Value 

Flow 
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Quasi-Steady Hypothesis of Mean Flow Pressure Drop in 
the Presence of Pulsating Flow 
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Quasi-Steady Hypothesis of Mean Flow Pressure Drop in 
the Presence of Pulsating Flow 
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Quasi-Steady Hypothesis of Mean Flow Pressure Drop in 
the Presence of Pulsating Flow 
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Quasi-Steady Hypothesis of Mean Flow Pressure Drop in 
the Presence of Pulsating Flow 
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Quasi-Steady Hypothesis of Mean Flow Pressure Drop in 
the Presence of Pulsating Flow 
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Normalized Mean Flow Pressure Loss Coefficient 
(Orifice) – Referenced to NPS4 
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Normalized Velocity Oscillation at Bottle Flange or Orifice Plate (urms/U)

Square/Square  Orifice, Beta = 0.5, Single Hole

Square/Square  Orifice, Beta = 0.5, Multiple Holes

Square/Square  Orifice, Beta = 0.7, Single Hole

Square/Square  Orifice, Beta = 0.7, Multiple Holes

Square/Diffuser Orifice, Beta = 0.5, Single Hole

Taper/Square  Orifice, Beta = 0.5, Single Hole

Taper/Diffuser Orifice, Beta = 0.5, Single Hole

Configuration A:
Orifices

Ktheoretical (for β = 0.5) = 29.7 

Ktheoretical (for β = 0.7) = 4.3 
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Test Results 
(Configuration B) 
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Configuration B Test Scope 

For each of the sub-configuration and flow rate, a total of  10 tests were conducted 
at the following frequencies: 0, 11, 13, 15, 17, 22, 27, 31, 35, and 41 Hz. 
(Total for Configuration B = 160 Tests) 

Test
Number of 

Sonic Nozzles
End Treatments Orifice β Hole(s)

1 3 and 6 Square/Square 1 -

1a 3 and 6 Square/Square 0.5 Single

1b 3 and 6 Square/Square 0.5 Multiple

1c 3 and 6 Square/Square 0.7 Single

1d 3 and 6 Square/Square 0.7 Multiple

2 3 and 6 Square/Diffuser 0.5 Single

3 3 and 6 Taper/Diffuser 0.5 Single

4 3 and 6 Taper/Square 0.5 Single

Configuration B Test Scope
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Normalized Pulsating Power Loss (Bottle) 
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Normalized Velocity Oscillation at Bottle Flange or Orifice Plate (urms/U)

Square/Square Orifice, Beta = 0.5, Single Hole

Square/Square Orifice, Beta = 0.5, Multihole
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Square/Square Orifice, Beta = 0.7, Multihole

Square/Diffuser Orifice, Beta = 0.5, Single Hole

Taper/Square Orifice, Beta = 0.5, Single Hole

Taper/Diffuser Orifice, Beta = 0.5, Single Hole

Configuration B:
Bottle

TGP St54 (Original Bottles)

TGP St54 (New Bottles)
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Current Measurements of Mean Flow Pressure Loss 
Coefficient (Representative of Discharge Bottle) 
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Summary of Site Testing 

1. Methodology: Successful in validating the Flow Energy (acoustic power) 
methodology developed in Phase I. 

2. Bottle: Differences measured between the bottle loss factor in steady 
flow and fluctuating flow as compared to published data. A 21% 
difference for steady flow, 5% for fluctuating flow in the test rig.   

3. Orifice: Loss factor for single hole vs multi hole agreed well with 
published data. Some divergence at maximum test frequency of 41 Hz. 
Additional testing to investigate higher frequencies.  

4. Pulse Generator: could create sufficient pressure fluctuations (2% of 
line) but flow fluctuations were lower than high power compressor 
cylinder (urms/U <0.3).  
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2014 Project Plan 

Task Status 

Field Test   
- Design test rig 
- Fabricate and Install 
- Execute Test Plan 
- Data Analysis 

Testing completed July 25 
Data review and analysis 95% completed. 

Report Complete by end of 2014 

Optional Scope: Testing 
on reciprocating  
compressor facility 

Need a site: TGP Stn 54, lots of information 
from Phase 1. Other site possible. 
 
Design test: 
- Fluctuation flow measurement 
- Compressor performance (P-V curves) and 

power measurements (torque, motor 
power) 
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Suggestions for Future Work 

 Addition testing proposed at the TCPL site. Redesign of 
pulse generator or test rig required to create high flow 
fluctuations. CFD analysis of components. 
 
 
 
 
 

 4 possible journal publications resulting from the work 
completed.  
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