

Predicting the Power Loss of Reciprocating Compressor Manifolds

Project Team:

NOVA Research: Kamal K. Botros John Geerligs Beta Machinery: Kelly Eberle Brian Howes Gordon Sun Russ Barss Bryan Long TransCanada: Thomas Robinson

Peerless Mfg: Dave Breindel

<u>PSC:</u>

Martin Hinchliff - chair Rainer Kurz Christine Scrivner Steve O'toole Clint Lingel

Project Motivation

Compressor Performance Calculation

Compressor Performance Calculation

MACHINERY ANALYSIS

Pressure Drop Calculation... easy, right?

5

Challenges to Industry

 Manifolds (pulsation bottles) have complicated geometry. K-factors are not published.

 Recip compressors create high flow fluctuations.

• How to relate pressure drop to power loss?

How important is power loss?

Inaccurate power calculation effects performance and reliability (3% to 12% error in results)

- Consequences:
- Driver size inadequate
- Unable to meet contract flow
- Reliability (rod load, reversal, and discharge temperature)
- Inefficient operation

Overall Project Objectives

- 1. Develop a <u>methodology</u> to predict the mean and pulsating power losses across Reciprocating Compressor Manifolds (bottles).
- 2. <u>Validate</u> the methodology via experimental means, either from:
 - Measurements of actual recip. compressor in the field, or
 - Scale-down test rig involving a custom-design bottle and a Pulsegenerator.
- 3. <u>Ultimate Goal is to</u>:
 - Recommend a standard methodology to quantify the pulsating flow power loss.
 - Come up with adjustment factor(s) to be applied to the mean pressure drop coefficient (K) in the presence of pulsating flow.

Overall Project Objectives

- 1. Develop a <u>methodology to predict the</u> mean and pulsating power losses across Reciprocating compressor Manifolds (bottles).
- 2. <u>Validate</u> the methodology via experimental means, either from:
 - Measurements of actual recip. compressor in the field, or
 - Scale-down test rig involving a custom-design bottle and a Pulsegenerator.
 Focus of this presentation
- 3. <u>Ultimate Goal is to</u>:
 - Recommend a standard methodology to quantify the pulsating power loss.
 - Come up with adjustment factor(s) to be applied to the mean pressure drop coefficient (K) in the presence of pulsating flow.

Outline

- 1. Test Program
- 2. Measurements and Results
- 3. Key Findings
- 4. Next Steps

Test Setup at TCPL's GDTF in Didsbury, Alberta

Pulse Generator

Pulsations will be created by a hydraulically driven rotating paddle

- Not a recip compressor
- Operate at 300 to 1200 rpm.
- Double acting
- Pulse amplitude 1% to 2% line pressure

Test Setup Details

Configuration B: Orifice Upstream, Bottle Downstream

Custom Bottle Design (donated by Peerless Mfg.)

End Treatments

Square End Treatment

11

-

Diffuser End Treatment

I

T

5

- with

Photos of Configuration A Setup

Kulite P Transducers

NOVA 2

175

Pair of Dynamic P Transducers (1.5 m apart)

> Static P & T Transducers (Upstream)

Kulite P Transducers

Pair of Dynamic P Transducers (1.5 m apart)

Rosemount Differential P Transducer

> Pair of Dynamic P Transducers (1.5 m apart)

Pair of Dynamic P Transducers (1.5 m apart)

Kulite P Transducers

Static P & T Transducers (Downstream)

Photos of Configuration B Setup

MACHINERY ANALYSIS

Example of Pulsating Pressure Measurements (Across the Bottle)

Example of 1st Harmonic \vec{P}_k and \vec{u}_k Mapping (Configuration A)

NOVA Chemicals[®]

Example of 1st Harmonic \vec{P}_k and \vec{u}_k Mapping (Configuration B)

Test Results (Configuration A)

Configuration A Test Scope

Configuration A Test Scope				
Test	Number of Sonic Nozzles	End Treatments	Orifice β	Hole(s)
1	3 and 6	Square/Square	1	-
1a	3 and 6	Square/Square	0.5	Single
1b	3 and 6	Square/Square	0.5	Multiple
1c	3 and 6	Square/Square	0.7	Single
1d	3 and 6	Square/Square	0.7	Multiple
2	3 and 6	Square/Diffuser	0.5	Single
3	3 and 6	Taper/Diffuser	0.5	Single
4	3 and 6	Taper/Square	0.5	Single
4a	High flow	Taper/Square	0.7	Single

For each of the sub-configuration and flow rate, a total of 10 tests were conducted at the following frequencies: 0, 11, 13, 15, 17, 22, 27, 31, 35, and 41 Hz. (Total for Configuration A = 180 Tests).

Normalized Pulsating Power Loss (Bottle)

Normalized Velocity Oscillation u_{rms}/U

- TGP Station 54: 8350 HP compressor, 6 throw
 - u_{rms}/U=0.7-1.3
- Gathering compressor: 1775 HP, 4 throw
 - u_{rms}/U=0.75
- Vapour Recovery Compressor: 1200 HP, 6 throw
 - u_{rms}/U=0.4
- Test Setup: Hydraulic driven rotating paddle, 2 HP
 - u_{rms}/U=0.3 max

Current test setup representative of lower power/throw applications.

Pulse Generator modifications could generate u_{rms}/U=0.6

Normalized Pulsating Power Loss (Orifice)

Normalized Mean Flow Pressure Loss Coefficient (Bottle) – zoomed in

Theoretical *K* Factor for the Bottle with Square End Treatments

Bottle Theoretical K Coefficient				
NPS 4, ID (d2)	4.026	in		
Choke Tube ID (d1)	1.939	in		
Vessel ID (D)	14.29	in		
Choke tube (L)	26	in		
Element	Local K-Factor	K-Factor (Ref NPS4)		
Entrance to Bottle, <mark>K1</mark>	0.85	0.85		
Emtrance to Choke Tube (square), K2	0.49	9.11		
Choke Tube (f=0.014), <mark>K3</mark>	0.19	3.49		
Choke Tube Exit (square), <mark>K4</mark>	1.00	18.59		
Entrance from Bottle to NPS4, K5	0.42	0.42		
Sum (Overall K)		32.45		
Measured K Factor		25		

K is 21% lower than expected. Why?

Thoughts about why the Measured *K* Factor for the Bottle is Lower than Theoretical Value

NOVA Chemicals

Current Measurements of Mean Flow Pressure Loss Coefficient (Representative of Suction Bottle)

MACHINERY ANALYSI

Normalized Mean Flow Pressure Loss Coefficient (Orifice) – Referenced to NPS4

Test Results (Configuration B)

Configuration B Test Scope

Configuration B Test Scope					
Test	Number of Sonic Nozzles	End Treatments	Orifice β	Hole(s)	
1	3 and 6	Square/Square	1	-	
1a	3 and 6	Square/Square	0.5	Single	
1b	3 and 6	Square/Square	0.5	Multiple	
1c	3 and 6	Square/Square	0.7	Single	
1d	3 and 6	Square/Square	0.7	Multiple	
2	3 and 6	Square/Diffuser	0.5	Single	
3	3 and 6	Taper/Diffuser	0.5	Single	
4	3 and 6	Taper/Square	0.5	Single	

For each of the sub-configuration and flow rate, a total of 10 tests were conducted at the following frequencies: 0, 11, 13, 15, 17, 22, 27, 31, 35, and 41 Hz. (Total for Configuration B = 160 Tests)

Normalized Pulsating Power Loss (Bottle)

Normalized Velocity Oscillation at Bottle Flange or Orifice Plate (u_{rms}/U)

Current Measurements of Mean Flow Pressure Loss Coefficient (Representative of Discharge Bottle)

Summary of Site Testing

- 1. <u>Methodology</u>: Successful in validating the Flow Energy (acoustic power) methodology developed in Phase I.
- 2. <u>Bottle</u>: Differences measured between the bottle loss factor in steady flow and fluctuating flow as compared to published data. A 21% difference for steady flow, 5% for fluctuating flow in the test rig.
- Orifice: Loss factor for single hole vs multi hole agreed well with published data. Some divergence at maximum test frequency of 41 Hz. Additional testing to investigate higher frequencies.
- 4. <u>Pulse Generator</u>: could create sufficient pressure fluctuations (2% of line) but flow fluctuations were lower than high power compressor cylinder ($u_{rms}/U < 0.3$).

2014 Project Plan

Task	Status
 Field Test Design test rig Fabricate and Install Execute Test Plan Data Analysis 	Testing completed July 25 Data review and analysis 95% completed.
Report	Complete by end of 2014
Optional Scope: Testing on reciprocating compressor facility	 Need a site: TGP Stn 54, lots of information from Phase 1. Other site possible. Design test: Fluctuation flow measurement Compressor performance (P-V curves) and power measurements (torque, motor power)

Suggestions for Future Work

 Addition testing proposed at the TCPL site. Redesign of pulse generator or test rig required to create high flow fluctuations. CFD analysis of components.

 4 possible journal publications resulting from the work completed.

Thank You and Acknowledgements

- GMRC for Funding the Research Program
- PSC Oversight committee
- Peerless Mfg. (Dave Breindel) for fabricating and donating the Custom Bottle Design used in the present testing program.
- TCPL (Thomas Robinson) for the in-kind contribution of the use of the GDTF in Didsbury, Canada.
- The following individuals for assisting in conducting the tests and data analysis:
 - Matthew Kindree, Alex Mantey (NRTC)
 - Bill Eckert, Mark DuBois, Mehdi Arjmand (Beta)

Predicting the Power Loss of Reciprocating Compressor Manifolds

Project Team:

NOVA Research: Kamal K. Botros John Geerligs Beta Machinery: Kelly Eberle Brian Howes Gordon Sun Russ Barss Bryan Long TransCanada: Thomas Robinson

Peerless Mfg: Dave Breindel

<u>PSC:</u>

Martin Hinchliff - chair Rainer Kurz Christine Scrivner Steve O'toole Clint Lingel