Five simple methods to check reciprocating compressor performance

By Dr. Bryan Long, principal consultant – vibration dynamics and noise, Wood

There are often occasions when it is desirable to spot-check the performance of a reciprocating compressor; just after a rebuild, as part of commissioning or when something seems different.

Here are a few things you can do:

<table>
<thead>
<tr>
<th>#</th>
<th>Method</th>
<th>Pros and cons</th>
<th>Rating</th>
<th>Quantification of difference in throughput</th>
<th>Diagnostic insight</th>
<th>Ease of use</th>
</tr>
</thead>
</table>
| 1 | Compare measured flow with that predicted by OEM sizing (or other) software. | This is easy to do once a model has been created. Creating the model is not difficult but requires accurate load step numbers (clearances).
 + Can identify if the throughput is below capacity
 − Does not help identify the cause, requires a dedicated meter and loading curves or a software model | ⭐⭐⭐ | | | ⭐ |
| 2 | Compare inter-stage pressures with software model predictions | Points to which stage is at fault
 − Only applies to multi stage, needs a software model | ⭐ | | ⭐⭐⭐ | ⭐⭐⭐ |
| 3 | For cylinders on the same stage, compare discharge temperatures. | This method must consider that single-acting cylinders normally have somewhat higher discharge temperatures.
 + Can indicate which cylinder is at fault
 − Only applies with 2+ cylinders on stage | ⭐⭐ | | ⭐⭐⭐ | ⭐⭐⭐ |
| 4 | Check for hot valves by comparing equivalent valve cap temperatures | Capable of pinpointing which valve is leaking
 − May not be elevated if the valve leak is big | ⭐⭐⭐ | | | ⭐⭐⭐ |
| 5 | Calculate the capacity of each stage separately based on observed pressures and suction temperatures and look for significant discrepancy. A model is not required but best to set up an Excel calculation (which requires gas properties). If there is a significant difference, the lower value is the more accurate result, and the other stage has a problem.
 + No model required
 − Gas properties required | | ⭐⭐ | | | ⭐ |
| 6 | Detailed analysis of pressure-volume curves along with ultrasonic patterns. Well, this is not so simple; included here for comparison.
 + The most detailed analysis
 − Time-consuming to conduct, requires specialized equipment | | ⭐⭐⭐ | | | ⭐⭐⭐ |
The discharge temperature of a cylinder with a valve leak (black curve) increased, compared to another cylinder on the same stage (red), until a repair was made.

Suction valve cap temperatures show one significantly higher reading, indicating a leak.

Calculated capacity of stage 1 increases relative to stage 2 as a leak develops. The leak is verified by the rising discharge temperature deviation (black curve).