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Resonance Revealed: 
Understanding What Really 

Happens at Resonance
Chris White

Wood

RESONANCE
The word has various meanings in acoustics, chemistry, 
electronics, mechanics, even astronomy. But for vibration 
professionals, it is the definition from the field of mechanics 
that is of interest, and it is usually stated thus:

“The condition where a system or body is subjected to an 
oscillating force close to its natural frequency.”

Yet this definition seems incomplete. It really only states the 
condition necessary for resonance to occur—telling us nothing 
of the condition itself. How does a system behave at resonance, 
and why? Why does the behavior change as it passes through 
resonance? Why does a system even have a natural frequency?
 Of course, we can diagnose machinery vibration resonance 
problems without complete answers to these questions. But 
a fuller understanding can help lead us to the most effective 
solution, and naturally it is much more satisfying to have a real 
feel for what is happening. Whilst a little mathematics cannot 
be avoided, purely mathematical explanations can be a little 
too abstract for some readers. This paper therefore attempts to 

focus on some underlying principles and use these to construct 
vector diagrams to explain the resonance phenomenon. It thus 
aspires to provide a more intuitive understanding.

SYSTEM BEHAVIOR
Before we move on to the why and how, let us review the what— 
that is, what happens when a cyclic force, gradually increasing 
from zero frequency, is applied to a vibrating system.
 Let us consider the shaft of some rotating machine. Rotor 
balancing is always performed to within a tolerance; there 
will always be some degree of residual unbalance, which will 
give rise to a rotating centrifugal force. Although the residual 
unbalance is due to a nonsymmetrical distribution of mass 
around the center of rotation, we can think of it as an equivalent 
“heavy spot” at some point on the rotor.
 This heavy spot, and thus the centrifugal force, will complete 
a full cycle once per revolution. If there is little other excitation 
in the system, the displacement response, as measured in one 
radial plane, will be approximately sinusoidal. 
 At low speed, well below the system natural frequency, the 
peak or “high spot” of the vibration displacement cycle—
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measured by a sensor placed at a point on the bearing housing—
occurs with little or no time lag after the moment the “heavy 
spot” passes the same point. We say the “high spot” and “heavy 
spot” are approximately in phase (see Figure 1).
 As rotating speed increases and approaches the natural 
frequency of the system, two things happen. Firstly, vibration 
amplitude may increase signifi cantly, peaking at the point 
where the rotating speed equals the natural frequency (a local 
maximum). Secondly, an increasing phase lag will develop—
that is, a delay between the heavy spot passing a given point, 
and the peak of the measured vibration displacement at that 
same point. This lag will equal 90 degrees of shaft rotation 
when the rotating speed equals the system natural frequency.
 As rotating speed is increased still further, amplitude will 
initially reduce (from the local maximum) and the phase 
lag will continue to increase, tending toward 180 degrees 
when the frequency of the unbalance force is well above the 
natural frequency. 
 This behavior can be demonstrated experimentally during 
machine run ups and coast downs, plotting vibration amplitude 
and phase against frequency on a graph know as a bode plot (an 
idealized example is shown at Figure 2).
 To understand the mechanism that dictates this behavior, we 
must fi rst understand two underlying principles of motion in an 
oscillating system:

The (constant) • phase relationship between displacement, 
velocity and acceleration, and, 
The (changing) • amplitude relationship between 
displacement, velocity and acceleration . . . and how this 
is affected by frequency.

We will now consider each of these in turn.

ACCELERATION ALWAYS OPPOSES DISPLACEMENT
In any oscillating system, at any given moment, acceleration 
will always be in the opposite direction to displacement. This 
is fundamental to our explanation but may seem at fi rst glance 
to be somewhat counterintuitive. Let’s examine why it is true. 
For this we will consider the simpler case of a single degree 
of freedom system—a mass supported on a spring as shown 
in Figure 3 (see page 6)—experiencing damped free vibration. 
That is, we apply a single impulse force to the mass in the 
vertical direction and allow it to oscillate up and down.
 We can plot a full cycle of displacement from the at-rest or 
reference position, as shown in the upper plot of Figure 4 (see 
page 6).
 If we now examine its velocity, we see that the peaks of 
velocity occur as it passes through the reference point (zero 
displacement) in each direction, and that at the positive 
and negative peaks of displacement—at the extremes of 

movement—the velocity must be zero. The velocity cycle 
may thus be considered to lead the displacement cycle by 
90 degrees, as shown in the center plot of Figure 4. Now 
considering the acceleration cycle, we note that the peak of 
negative acceleration is at the peak of positive displacement 
and vice versa, as seen in the lower plot of Figure 4. 
 Acceleration therefore leads the displacement by 180 degrees 
and leads velocity by 90 degrees. These phase relationships will 
always apply in any vibration, regardless of cause, amplitude, 
or frequency.
 But the most important point to grasp here is that at the 
point of maximum displacement in either direction, the spring 
force will be imposing an accelerating force in the opposite 
direction—acceleration always opposes displacement.

Fig. 1: Phase lag below, at, and above resonance

Fig. 2: Idealised bode plot of vibration amplitude and 
phase vs. speed
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ACCELERATION AND DISPLACEMENT AMPLITUDES ARE 
FREQUENCY DEPENDANT
If we were to choose some fi xed amplitude of vibration velocity 
and could hold it constant but vary the frequency, we would 
fi nd that increasing the frequency will increase acceleration 
amplitude whilst reducing displacement amplitude.
 This can be reasonably inferred from the equations that relate 
these three parameters to each other. However, a more intuitive 
understanding comes of realizing that with a higher frequency, 
and thus shorter period, the mass has less time in which to 
travel and thus cannot travel so far—hence lesser displacement. 
Similarly, a shorter period in which to achieve a given peak 
velocity means the mass must experience much greater peak 
acceleration. This relationship is often represented in a graph 
similar to that at Figure 5.
 In summary:

At • low frequencies, displacement amplitude is high, 
acceleration is low;
At • high frequencies, displacement amplitude is low, 
acceleration is high.

A TALE OF FOUR FORCES
Let us return to our turning rotor. The main forces acting upon 
it are:

Centrifugal Force1.  (due to residual unbalance)
Spring Force2.  (due to bearing and support stiffness—a 
reaction to displacement)
Damping Force3.  (due to viscous shear of the oil fi lm—a 
reaction to velocity)
Inertia Force4.  (the reaction of the mass to acceleration) 

 Centrifugal Force (Fc) is the reaction force to angular 
acceleration. It acts in the direction of a line drawn from the 
center of rotation through the center of mass and is given by 
Fc = Meω2 = Me x (2πn/60)2, where M is the shaft mass in 
kilograms, e is the eccentricity (the distance between the center 
of rotation and center of mass) in meters, ω is the angular 
velocity in radians, and n is the turning speed in rpm.
 Spring Force (Fs) is the restoring force created by the stiffness 
of the shaft, bearings and/or support when displaced from the 
“at rest” position. It will always directly oppose displacement. 
Fs = kX, where k is the spring constant in Newtons/Metre, and 
X is the displacement in meters. So,

Spring force is proportional to Displacement.•	
Spring force opposes Displacement.•	

 Damping Force (Fd) is the force created by fl uid shear when 
an object has velocity in that fl uid, and it will directly oppose 
that velocity. Fd = cV (or cωX); where c is the damping constant 

Fig. 3: Mass-spring system
Fig. 4: Displacement, velocity, acceleration—phase 
relationship
Fig. 5: Effect of frequency on displacement, velocity, 
and acceleration
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in Newton-seconds/meter and V is the vibration velocity in 
meters/sec. If you wade through water, you will feel damping 
force as a “drag” resisting your motion. 

Damping force is proportional to Velocity.• 
Damping force opposes Velocity.• 

Inertia Force (Fi) is the reaction force produced when we try 
to accelerate any mass, and it will directly oppose acceleration. 
Fi = MA (or Mω2X), where M is the mass experiencing the 
acceleration and A is the acceleration. If you try to push a car 
on level ground, you will feel inertia force resist your efforts to 
get it moving.

Inertia force is proportional to Acceleration.• 
Inertia force opposes Acceleration.• 

We are now in a position to draw some important conclusions. 
If:

Displacement and acceleration act in opposite directions and • 
Spring force opposes displacement and• 
Inertia force opposes acceleration • 

Then:
Spring force and inertia force must also oppose •	
each other.

Due to the amplitude relationship between displacement and 
acceleration amplitudes noted in Figure 5, as machine speed and 
excitation frequency increases, the acceleration (and thus inertia 
force) will increase more rapidly than displacement (and the 
associated spring force). Eventually, a point is reached where the 
spring and inertia forces become equal and negate each other, 
leaving damping force alone to limit vibration amplitudes. If 
damping in our machine is low, this means that there is little to 
restrain amplitudes until they become very high—that is, high 
enough for the damping force to equal the excitation force. The 
frequency at which this occurs is fn, the natural frequency.
 This explains why there is a local maximum in the vibration 
amplitude at this point and why this maximum can be very 
significant if damping is low.
 But what of the phase shift? To understand this, we need to 
resort to some basic vector diagrams.

RESOLUTION OF FORCES USING VECTORS
Let us consider how these forces might act on a rotating shaft, 
with a certain degree of unbalance force. If the shaft is rotating 
at steady speed and producing a stable level of vibration, it 
is reasonable to assume that all the forces, although rotating 
together, are in equilibrium (that is, their vector sum is zero). 
To understand how phase shifts occur, we shall examine three 
cases of how these forces balance:

When excitation frequency is well below natural • 
frequency, 
When excitation frequency equals the natural frequency,• 
When excitation is well above natural frequency.• 

In the following vector diagrams, please note these are not to 
the same scale since the unbalance force will of course increase 
proportional to the square of the speed. The reader should, 
however, focus on the magnitudes of the forces relative to each 
other, since it is this that produces the phase shift. 
 To avoid cluttering the diagrams, please note that the curved 
arrow labelled ωt simply indicates the direction of rotation, and 
ωt is the instantaneous phase angle. The location of the theoretical 
“heavy spot” created by the offset center of mass would be at 
the tip of the vector labelled “excitation force.” Note that, as 
discussed, the acceleration vector leads the velocity vector by 90 
degrees and the displacement vector by 180 degrees.
 Figure 6 is a vector diagram showing the resolution of 
forces when turning speed is well below natural frequency. 
Displacement is high relative to velocity and acceleration 
because the exciting frequency is low. Consequently, damping 
force and inertia force are relatively small compared with 
spring force, and almost all the excitation force produced is 
expended in overcoming spring force. Therefore, displacement 
lags behind the excitation force by only a small amount.
 In Figure 7, speed has now been increased such that the 
turning speed equals the natural frequency. The acceleration 
term in the inertia force has increased to the point where inertia 
force and spring force are now equal. This means that the 
only force now opposing the excitation force is the damping 
force. This is an undesirable area to operate in, since if the 
machine design provides little in the way of damping, there is 
consequently little to constrain vibration amplitudes and very 
high vibration may result.
 Note that the phase of the unbalance force has not changed—
the heavy spot has not moved! Thus the other forces—and hence 
the displacement, velocity, and acceleration vectors—must 
realign themselves to maintain equilibrium. Hence, displacement 
will now lag the excitation force by exactly 90 degrees.
 In Figure 8, speed has further increased to well above the 
natural frequency. The acceleration term in the inertia force 
means this force now dominates the vector diagram, with 
relatively small influence from spring and damping forces. 
Again we note the phase of the excitation force has not 
moved, but this force is now mostly expended in overcoming 
inertia force. Again, the force vectors must realign to achieve 
equilibrium, thus so too must displacement, velocity, and 
acceleration. Hence, displacement now lags the excitation force 
by an amount approaching 180 degrees.
 We can therefore divide the frequency range into three 
regions (see Figure 9 on page 9):



8 \ VIBRATIONS SPRING 2018 

feature article

The 1. Spring Controlled Region, where amplitudes are 
limited by the dominant spring force
The 2. Mass Controlled Region, where amplitudes are limited 
by the dominant inertia force
The 3. Damping Controlled Region, where spring and 
inertia forces cancel, leaving damping force alone to limit 
vibration amplitudes.

A possible revised definition of resonance might then read 
as follows:

“The condition where a system or body is subjected to 
an oscillating force, at a frequency such that spring force 
and inertia force are equal and negate each other—the 

natural frequency—leaving damping force alone to limit 
vibration amplitudes.”

SYSTEM NATURAL FREQUENCY
This condition of equality of the spring and inertia forces also 
shows the way to the derivation of the natural frequency of a 
system. This derivation is shown in Figure 10.
 We have now covered what happens at resonance and why and 
determined why a mass spring system has a natural frequency. 
 There are other questions to consider, such as why some 
systems appear to have more than one natural frequency. The 
simple answer to this is that whilst there is only one natural 
frequency for a given mass and stiffness, some systems have 
different stiffness in different planes (e.g. a horizontally 
mounted machine will be more stiff in the vertical plane than 
the horizontal) and thus a different stiffness is applicable to 
the calculation. 
 Additionally, shafts may also have different modes of 
vibration (bouncing, rocking and bending modes for example), 
and different parts of the machine may have different natural 
frequencies. Considered together, a machine train may have 
many natural frequencies in different areas and different planes. 
When we consider also that as the speed of a machine changes 
and the excitation forces pass through these natural frequencies, 
the behavior described above may not have even completed its 
transition through the regions relevant to one natural frequency, 
before behavior starts to be affected by another. Add to this the fact 
that excitation frequencies at other than turning speed, produced 
by phenomena such as vane pass frequency for example, also 
pass through these zones, analysis can become quite complex!

DIAGNOSING RESONANCE
Resonance should be suspected if any of the following 
characteristics are present:

Vibration at a particular frequency is disproportionately • 
higher in one plane than in other planes,

Fig. 6: Force vectors, speed well below natural frequency

Fig. 7: Force vectors, speed equal to natural frequency

Fig. 8: Force vectors, speed well above natural frequency
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The design of the structure has lower stiffness in • 
that plane,
In a variable speed machine, the amplitude at a particular • 
order of turning speed varies very signifi cantly with speed,
The shape of the peak may have an unusually wide base—• 
but this is not nearly as reliable as the fault fi nding charts 
seem to suggest! It depends on the degree of damping.

To close, let us take a brief look at a simple case study. 
 A variable speed motor, mounted above a belt driven pump 
(Figure 11), was found to have very high vibration at motor 
turning speed in the horizontal (Figure 12, see page 10) but 
had very low amplitude at the same frequency in the vertical 
(Figure 13, see page 10).
 Data acquired later at a slightly higher speed resulted in much 
lower amplitude (Figure 14, see page 10); a simple impact or 
“bump” test confi rmed the diagnosis (Figure 15, see page 10). 
 Most such machines are usually designed so that the fi rst 
natural frequency is well above likely excitation frequencies. 
Thus the fi rst avenue to explore was to check that all was as 
intended with the support structure and that nothing had gone 
awry to reduce the stiffness below design—i.e. all fasteners 
were checked secure, and the frame inspected for cracked 
welds, enlarged holes, or other damage that could reduce 
stiffness. No such issues were found here, however.
 A number of possible remedies were explored, including 
adding diagonal cross-bracing between the four threaded bar 
“legs” supporting the motor platform. However, it was found 
that the natural frequency could be moved somewhat higher by 
using shorter belts and reducing the length of the legs / height 
of the platform. Although this meant modifi cations to the belt 
guards, this was found to be a most effective solution.

Fig. 9: Bode plot with overlay marking spring, damping, 
and mass controlled regions

Fig. 10: Derivation of natural frequency formula (in 
Hertz)

Fig. 11: Slurry pump, motor mounted on platform 
about pump
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Fig. 12: Motor DE horizontal at 1,343 rpm Fig. 13: Motor DE vertical at 1,343 rpm

Fig. 14: Motor DE horizontal at 1,466 rpm Fig. 15: Impact test results


