Vibration-Induced Fatigue – A Risk-Based Approach

Michael Cyca, MSc, PEng

Wood Group Vibration, Dynamics & Noise

Engineering Manager

JAN. 30-FEB. 02 | GALVESTON ISLAND | TEXAS

ASSET INTEGRITY THROUGH CORROSION MANAGEMENT, INSPECTION AND ENGINEERING TECHNOLOGY

Presentation Overview

- 1. Introduction
- 2. Common Vibration Issues
- 3. Sources of Vibration
- 4. The Industry Gap
- 5. Case Studies
- 6. Best Practices
- 7. A Risk-Based Approach
- 8. Summary

7TH BIENNIAL INSPECTION SUMMIT

Introduction

- What is vibration-induced fatigue (API 571)?
- What causes it?
- How does it affect integrity?
 - Shaking mainline
 - Small-bore connections
 - Loosening of bolts and cracking of supports
- How can you prevent it?

Examples of Vibration Problems

Vibration Excitation Mechanisms

- Machinery excitation
- Pressure pulsation
- Turbulence
- Flashing/cavitation

- Transients (water hammer)
- Rotating stall
- Dead-leg pulsation
- Acoustic-induced

The Industry Gap

What?

- Vibration is not properly managed in mechanical integrity programs
- Reoccurring failures
- Reactive approach

Why?

- Most integrity professionals lack tools/experience to address vibration
- Reliant on operator surveillance
- Focused on corrosion

Solution

Integrate vibration into your mechanical integrity program

Description:

- Quintuplex Plunger Pumps @ 297 HP
- Liquid Propane
- Speed Range 200-400 RPM
- 6 months in operation
- Very high piping vibrations!

Field Visit:

- High vibrations measured
- PSV resonant
- Dampener resonant

115

Rm7

Vibration analysis (API 674):

- System modelled using proprietary software
- Very high shaking forces predicted
- Due to pressure pulsations

Field follow-up:

- NDT locations determined from highest predicted forces
- Significant cracking found
- Units shutdown

Outcome:

- Owner had to replace significant amounts of piping
- Downtime, however, <u>hydrocarbon release avoided!</u>

Vibration analysis integrates with integrity management

7TH BIENNIAL INSPECTION SUMMIT

Case Study #2 – Acoustic-Induced Fatigue

Description:

- At pressure letdown (eg, control valve, blowdown, PSVs)
- Flare systems (API 521)
- Not visible, but frequently audible
- Short time to failure
- Failures at branches, supports, etc

Case Study #2 – Acoustic-Induced Fatigue

- Catastrophic failure
- 6" blowdown line to 16" flare header
- Desktop screening would have flagged the connection as a concern

Case Study #2 – Acoustic-Induced Fatigue

Recommendations:

- Conduct screening of pressure-relief systems (API 521)
- Use forged tees instead of fabricated tees
- Change from welded to bolted supports
- Reinforce branch connections, where necessary
- Target NDT at high-risk branch connections

Small-Bore Connections

Description:

- Problematic in vibrating service
- · Should be removed, moved, redesigned or braced

Small-Bore Connections

Recommendations:

- 1. Avoid redundant connections (or remove them)
- 2. Reduce length and mass
- 3. Brace back to the vessel or pipe (not to anything else!)
- 4. Use Schedule 160 pipe for nipples
- 5. Use monoflange valves, or similar

Best Practice Recommendations

- 1. Conduct pulsation analysis for pumps > 25 hp
- 2. Conduct pulsation analysis for compressors > 75 hp/cyl.
- 3. Avoid elevated process piping and unsupported elbows
- 4. Ensure process piping supports are effective
- 5. Do not use U-bolts in vibrating service
- 6. Minimize or brace small-bore connections

A Risk-Based Approach

Background:

Regulators were concerned over number of fatigue failures A JIP was formed including O&G majors and consultants

A Risk-Based Approach

Energy Institute

Guidelines for the Avoidance of Vibration-Induced Fatigue Failure in Process Pipework, 2nd Ed, 2008

- A screening process for facilities
- A proactive, risk-based approach
- Qualitative and quantitative assessment leads to a "Likelihood of Failure" (LOF) value

Complementary Approaches

energy P

www.api.org/Inspection

Marked-up PFDs/P&IDs

Acoustic-induced vibration

www.api.org/Inspection

7TH BIENNIAL INSPECTION SUMMIT

Qualitative Assessment

Modules / Qualitative Assessment	
(FIT) Flow induced turbulence (EI AVIFF Guidelines T2.2)	(fit)
Is the maximum value of kinetic energy (pv ²) of the process fluid above 5000 kg/m s ² ?	Yes 🔻
(SBC) Small bore connections (EI AVIFF Guidelines)	(sbc)
Is any of the main line LOF's ≥ 1?	Yes 🔻
Mechanical Excitation (EI AVIFF Guidelines T2.3)	(mex)
Is there any rotating or reciproating machinery?	No 🔻
Reciprocating items (EI AVIFF Guidelines T2.4)	(rec)
Are there any positive displacement pumps or compressors?	No 🔻
Pressure drops & valves (EI AVIFF Guidelines T2.8 and T2.9)	(prd)
Are there any systems which exhibit flashing or cavitation, or are there any fast acting opening or closing valves?	Yes 🔻
Thermowells	(thw)
Are there any intrusive elements in the process stream?	No 🔻
Known vibration problem (EI AVIFF Guidelines - Specialist)	(vib)
Is there a history of pipework vibration issues on this system, or similar systems?	No 🔻

Likelihood of Failure (LOF) Values

Record ID	P&ID	Line Reference	Description	Pipe Details	Stream	% of Stream	Qualitative Assessment (Modules)	Flow induced turbulence	Flow induced pulsation	Small bore connections
1	0428-MI20- 90DP-3406	16-SW-N-40604 - 14" section, 16-SW- N-40606 - 14" section	System 1	14" 7000M WT:9.0 Glass Reinforced Epoxy	System 1 - Stream 1(liquid)	100	v = 6.2 m/s pv ² = 38594	0.97		
2	0428-MI20- 90DP-3406	16-SW-N- 40604/3P2-3	System 1	16" 7000M WT:10.3 Glass Reinforced Epoxy	System 1 - Stream 1(liquid)	100	v = 4.8 m/s ρv ² = 22630	1.13		0.66
3	0428-MI20- 90DP-3160	24-SW-N- 40615/3PU	System 1	24" 7000M WT:15.4 Glass Reinforced Epoxy	System 1 - Stream 2(liquid)	100	v = 4.2 m/s pv ² = 17868	0.65		
4	0428-MI20- 90DP-3435	24-SW-N-42601	System 2	24" 7000M WT:15.4 Glass Reinforced Epoxy	System 2 - Stream 1(liquid)	100	v = 2.2 m/s pv ² = 4881	0.18		

Modifications / Inspection Planning

Summary

- 1. Vibration is a **significant threat** to facility integrity
- 2. Vibration is **not managed effectively** in integrity programs
- 3. Tools and experience exist to assist integrity professionals
- 4. Vibration screening is complementary to integrity methods
- 5. Field vibration measurement is effective alongside NDT

A successful integrity program includes vibration!

