

AMERICAN PETROLEUM INSTITUTE

Vibration integrity management

New tools to avoid fatigue failure

Speaker

Michael Cyca, MSc, PEng Service Lead Americas – Static Equipment and Structures, Wood

- 16 years' industry experience
- Field of expertise: vibration engineering

Agenda

- 1. Introduction
- 2. Conclusions from 2017 Presentation
- 3. Complementary approach to RBI (API 570)
- 4. Excitation mechanisms
- 5. How companies can asses vibration risks
- 6. Recommendations

7. Conclusion

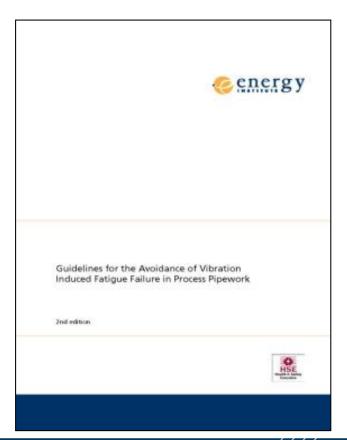
Introduction

- Vibration-related fatigue failure on piping is a real threat to facilities
- Vibration should be included in integrity programs
- How can owners/operators be proactive to understand this risk?
- How can owners/operators take corrective action before the failure and loss of containment occurs?

Conclusions (from 2017)

- Vibration is a **significant threat** to facility integrity
- Vibration is not managed effectively in most integrity programs
- Tools and experience exist to assist integrity professionals
- Vibration screening is complementary to integrity methods
- Field vibration measurement is effective alongside NDT

A successful integrity program includes vibration considerations

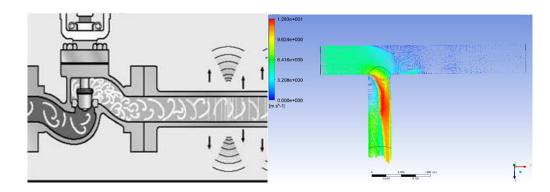


Energy Institute

Guidelines for the **Avoidance of Vibration Induced Fatigue Failure** in Process Pipework 2nd Ed., 2008 (EI **AVIFF**)

Complementary approach to API 570

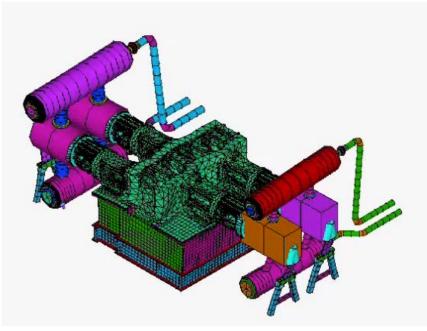
Piping mechanical integrity (per API 570)	Vibration assessment (per El guidelines)									
What's in scope?										
Consequence and criticality assessment determines priority lines to focus on (safety and production critical)	Typically includes a mainline assessment (primary process piping) and rotating equipment									
What could	l go wrong?									
Markup PFDs / P&IDs (circuitization) Identify likely damage mechanisms	Small-bore connections, reciprocating equipment, turbulence, flare lines, valves, resonance									
How bad is it?										
Assess process and materials to determine corrosion and environmental cracking threats	Assess vibration mechanisms using appropriate screening tools									
How can we	e manage it?									
 Develop inspection test plans (ITPs) Process/materials recommendations Establish integrity operating windows (IOWs) 	 Inspection locations included in ITP Engineered solutions (clamps, braces, etc) IOWs (flow limits, equipment speed range) Manage anomalies until close-out 									


Excitation mechanisms from EI AVIFF

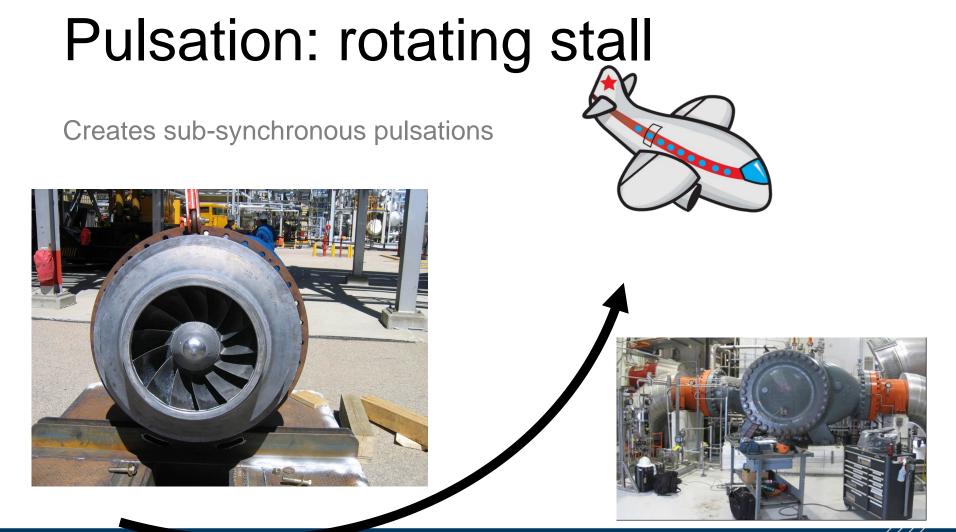
- Flow-induced turbulence
- Mechanical excitation and pulsation
- Pulsation: rotating stall
- Pulsation: flow-induced excitation
- High-frequency acoustic excitation
- Surge: momentum changes due to valve operation
- Cavitation and flashing

Flow-induced turbulence (FIT)

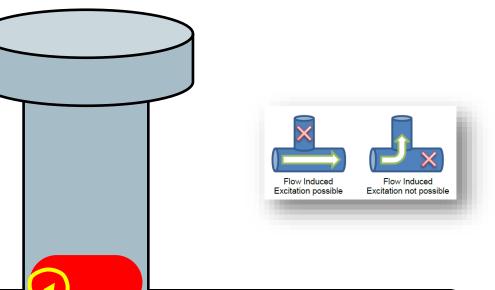
- Dominant source for FIV turbulence is generated at flow discontinuities in the system, such as:
 - Process equipment
 - Partially closed valves
 - Short radius or mitred bends
 - Tees and reducers



• Turbulence is generated in fluid flowing in piping, leading to vibration with frequency ranges up to 200 Hz

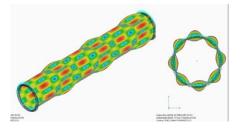

Mechanical excitation and pulsation

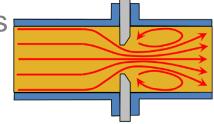
- Reciprocating and positive displacement machines
- Energy at orders of operating speed
- Mechanical excitation close
 to compressors
- Uncontrolled pulsations travel upstream and downstream, impact piping



Pulsation: flow-induced excitation

- Deadleg pulsation
- Flow creates vortices
- Deadleg has resonance frequency
- Problems occur if vortex frequency coincident with deadleg quarter wave resonance frequency



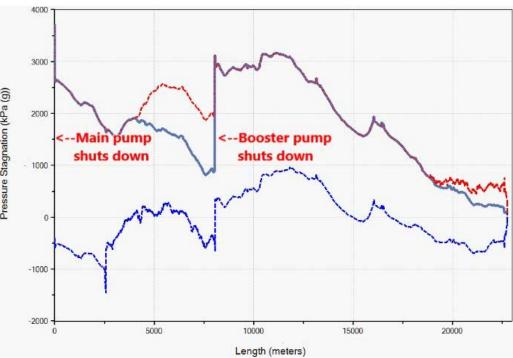


High-frequency acoustic excitation (AIV)

- High levels of acoustic energy can be generated in high-capacity gas-pressure-reducing systems such as:
 - Pressure relief
 - Blow down
 - Flow or pressure control
- High levels of acoustic energy can result in severe piping vibration, leading to piping component fatigue failure in as little as a few hours

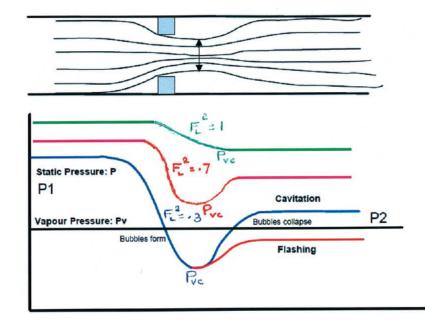
Typical frequency range: 300 Hz to 4000 Hz

High-frequency acoustic excitation (AIV)



Surge: momentum changes due to valve operation

- Localized changes in the fluid velocity
 - Valve closing
- Valve closing
 Pump start and stop
 Pressure peaks traveling through the pipe
 - Excitation of localized pipe resonance
 - Trip relief valve



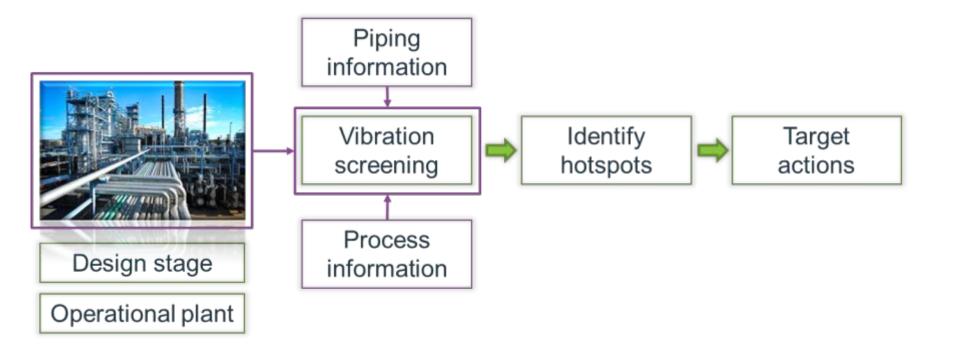


Cavitation and flashing

- When local pressure in liquid goes below vapor pressure
- Occurs near pressurereducing areas like pump inlets, valves, orifice plates
- Cavitation is when the bubbles quickly collapse
- Flashing is when the bubbles remain in the liquid

How you do know when to be worried?

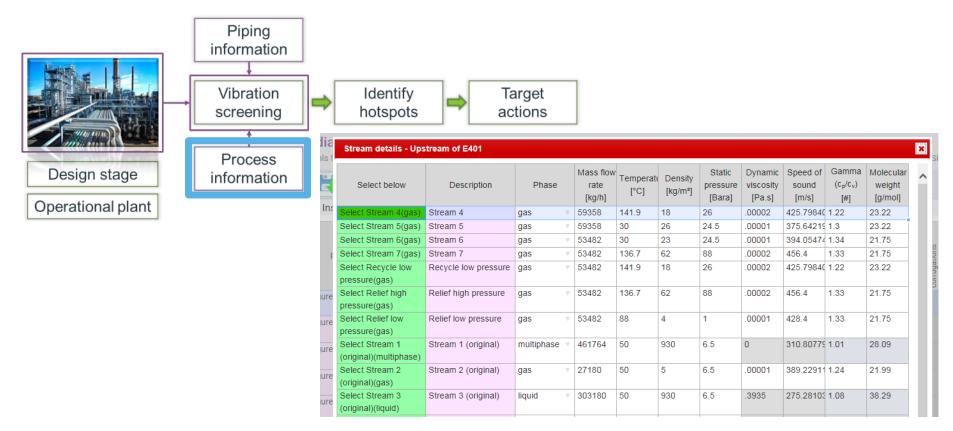
Know where to focus your efforts


Vibration screening tool Veridian

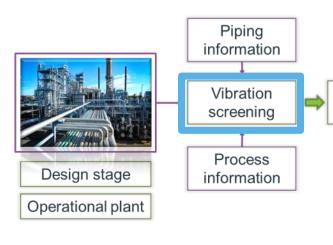
Free, web-based application that applies the EI standard to proactively identify piping vibration integrity threats

Veridian Signed in as jordan grose@woodgroup.com Sign out												
We	b tools for vibration	on, dynamics and hor	×									
	system 2/System 2 - Electrostatic Treatment_R00											
	P&ID	Line reference	Description	Notes	Pipe details	Stream	% of stream	Qualitative assessment (modules)	Flow-induced turbulence	Valve transients	Cavitation and flashing	Small bore connections
- Record ID	0381-MI20-	14"-PL-A5D-19023- 2H1	1st Stg. Electrostatic		14" CBI-A5D 10S Stainless	Stream 1009 (Max Oil) (liguid)	50	v=2.2 m/s pv2= 3,662	0.15			
2	90DP-3190 0381-MI20- 90DP-3190	2H1 14"-PL-A5D-19023- 2H1			Steel 14" CBI-A5D 10S Stainless Steel	Stream 1009	50	v=2.2 m/a pv ² = 3,662	0.15			
3	0381-MI20- 90DP-3190	14"-PL-A5D-19023- 2H1	1st Stg. Electrostatic		14" CBI-A5D 10S Stainless Steel	Stream 1009	100	v=4.3 m/s pv²= 14,648	1 38	0.10	0.00	
4	0381-MI20- 90DP-3190	14"-A5D-2RNX- 19063	1st Stg. Electrostatic		14" CBI-A5D 10S Stainless Steel	Stream 1010 (Max Oil) (liquid)	100	v=3.2 m/s pv²= 8,173	0.77	0.60	1.00	0.66
5	0381-MI20- 90DP-3190	14"-A5D-2RNX- 19064	1st Stg. Electrostatic		14" CBI-A5D 10S Stainless Steel	Stream	100	v=7.9 m/s pv2= 20,085	0.83	0.47	1.00	0.68
6	0381-MI20- 90DP-3190	16'-PL-A5D-19024- 2H1	1st Stg. Electrostatic		16" CBI-A5D 10S Stainless Steel	Stream 1012 (Max Oil) (multiphase)	100	v=6.1 m/s pv²= 12,098	0.49	0.14	1.00	0.70
7	0381-MI20- 90DP-3192	16"-A5D-2RNX- 19233	1st Stg. Electrostatic		16" CBI-A5D 10S Stainless Steel	Stream 1013 (Max Oil) (multiphase)	100	v=14.3 m/s pv²= 28,322	1.14			0.64
8	0381-MI20- 90DP-3192	None	1st Stg. Electrostatic		18" CBI-A5D 10S Stainless Steel	Stream 1013	100	v=11.2 m/a pv ² = 17,493	0.68			
	0381-MI20- 90DP-3190 0381-MI20-	None	1st Stg. Electrostatic		6° CBI-A5D 10S Stainless Steel	Stream 4502	100	v=0.4 m/s pv²= 121	0.01			
10	90DP-3190	3°-A5D-5RSX- 19069	1st Stg. Electrostatic		3° CBI-A5D 10S Stainless	Stream 4502	100	v=1.3 m/s pv2= 1.748	0.08	1.00	0.00	

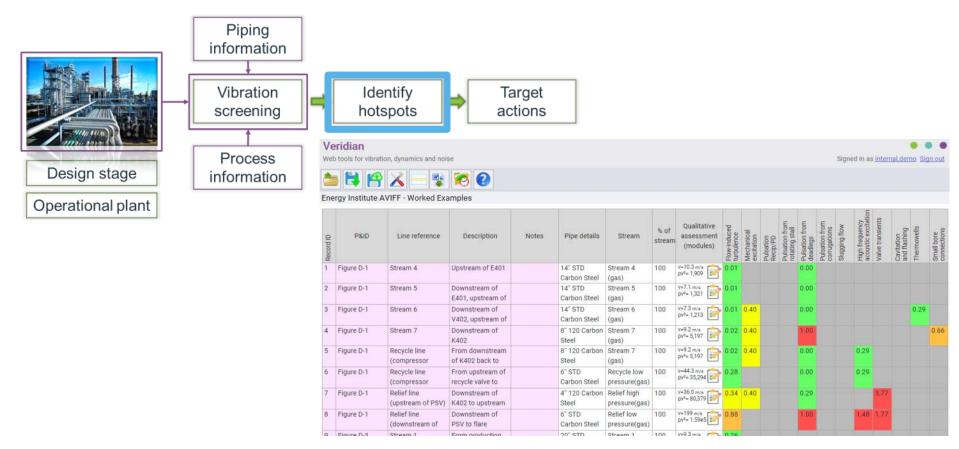
Vibration screening approach


Enter piping information

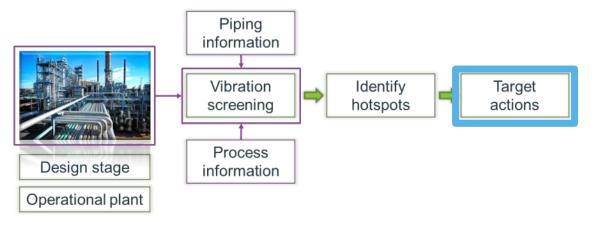
energy **PL** 2019 INSPECTION AND MECHANICAL



Enter stream information


Qualitative screening

Modules / Qualitative Assessment	×
(FIT) Flow-induced turbulence (EI AVIFF Guidelines T2.2)	(fit)
Is the maximum value of kinetic energy (pv²) of the process fluid above 5000 kg/m s²?	Yes
Mechanical Excitation (EI AVIFF Guidelines T2.3)	(mex)
Is there any rotating or reciprocating machinery?	No 🗸
Pulsation from reciprocating items (EI AVIFF Guidelines T2.4)	(rec)
Are there any positive displacement pumps or compressors?	No 🔽
Pulsation from rotating stall (EI AVIFF Guidelines T2.5)	(rst)
Are there any centrifugal compressors which have the potential to operate under rotating stall conditions?	No 🔽
Pulsation from corrugated pipes (EI Subsea AVIFF Guidelines E4.3)	(cor)
Does the system contain any rough bore flexibles?	No 🔽
(AIV) High frequency acoustic excitation (EI AVIFF Guidelines T2.7)	(aiv)
Is choked flow possible, or are sonic flow velocities likely to be encountered? only applies to pressure reducing systems, not the main line	No 🔽
Valve transients (EI AVIFF Guidelines T2.8)	(tra)
Are there any fast acting opening or closing valves?	No 🔽
Thermowells (ASME PTC 19.3 TW - 2016)	(thw)
Are there any intrusive elements in the process stream?	No 🔽
(SBC) Small bore connections (EI AVIFF Guidelines)	(SbC)
Are any of the main line LOF's ≥ 0.3 ?	No 🔽


Qualitative screening

Target actions

/e	ridian	n, dynamics and nois	se			Signe	u 11 1	ordan.grose@w				
eb	1 4 × 1 + 1	💦 🦳 🐩	😢 😥									
-		2 - Electrostatic T	Treatment_R00							47		
	P&ID	Line reference	Description	Notes	Pipe details	Stream Stream 1009	% of stream	Qualitative assessment (modules)	Flow-induced turbulence	Valve transients	Cavitation and flashing	Small bore connections
Necord ID								v=2.2 m/s ov= 3,662	0.15			
2	0381-MI20- 90DP-3190	14"-PL-A5D-19023- 2H1	1st Stg. Electrostatic		10S Stainless Steel	(Max Oil) (liquid)		y=2.2 m/s	0.15			
2	0381-MI20- 90DP-3190	14"-PL-A5D-19023- 2H1	1st Stg. Electrostatic		14" CBI-A5D 10S Stainless Steel	Stream 1009 (Max Oil) (liquid)	50	pv²= 3,662			0.00	0.7
3	0381-MI20- 90DP-3190	14'-PL-A5D-19023- 2H1	1st Stg. Electrostatic		14° CBI-A5D 10S Stainless Steel	Stream 1009 (Max Oil) (liquid)	100	v=4.3 m/s ρv ² = 14,648	1.38	0.10	0.00	
4	0381-MI20- 90DP-3190	14'-A5D-2RNX- 19063	1st Stg. Electrostatic		14" CBI-A5D 10S Stainless Steel	Stream 1010 (Max Oil) (liquid)	100	v=3.2 m/s pv²= 8,173	0.77	0.60	1.00	0.66
5	0381-MI20- 90DP-3190	14'-A5D-2RNX- 19064	1st Stg. Electrostatic		14° CBI-A5D 10S Stainless Steel	Stream 1011(Max Oil) (multiphase)	100	v=7.9 m/s pv²= 20,085	0.83	0.47	1.00	0.68
6	0381-MI20- 90DP-3190	16'-PL-A5D-19024- 2H1	1st Stg. Electrostatic		16° CBI-A5D 10S Stainless Steel	(Max Oil) (multiphase)	100	v=6.1 m/s ρv²= 12,098 📝	0.49	0.14	1.00	0.70
7	0381-MI20- 90DP-3192	16"-A5D-2RNX- 19233	1st Stg. Electrostatic		16° CBI-A5D 10S Stainless Steel	(Max Oil) (Max Oil) (multiphase)	100	v=14.3 m/s pv²= 28,322	1.14			0.64
8	0381-MI20- 90DP-3192	None	1st Stg. Electrostatic		18° CBI-A5D 10S Stainless Steel	Stream 1013 (Max Oil)	100	v=11.2 m/s pv²= 17,493	0.68			
9	0381-MI20- 90DP-3190	None	1st Stg. Electrostatic		6° CBI-A5D 10S Stainless	(multiphase) Stream 4502 (Max Oil)	100	v=0.4 m/s ρv ² = 121	0.01			
10	0381-MI20- 90DP-3190	3"-A5D-5RSX- 19069	1st Stg. Electrostatic		Steel 3° CBI-A5D 10S Stainless	(liquid) Stream 4502 (Max Oil)	100	v=1.3 m/s pv²= 1,748	0.08	1.00	0.00	
	90DP-3190				Steel	(liquid)	1					
	0 0381-MI20-	3°-A5D-5RSX- 19069	1st Stg. Electrostatic		3" CBI-A5D 10S Stainles:			pv²= 1,748 🔛				
	0381-MI20- 90DP-3190	None	1st Stg. Electrostatic		6° CBI-A5D 10S Stainless Steel			V=1.3 m/s	0.08			
								V=0.4 m/s				

When to perform a screening and why?

- New facility
 - FEED
 - Detailed design
 - Results in a better designed system
- Existing facility
 - If vibration risk is unknown
 - When facility requirements change (during management of change)
 - Increased throughput
 - When designing the upgrade of a facility
 - Enables owners to know where to focus their effort

Vibration screening (VS) can fill the gap

Case study

- Work scope: two assessments
 1. FIV on all main-line, hydrocarbon process pipework
 2. AIV on flare system pipework
- Three different facility design cases (including 100% and 120% design)
- All main-line pipework assessed for:
 - Flow-induced turbulence
 - Flow-induced pulsation/vibration (FIV)
 - Mechanical
 - Machinery-generated pulsation (reciprocating compressors)
 - Fast acting valves eg, flashing, cavitation

FIV results and recommendations

66 required actions identified

- 2 critical priority actions require immediate attention
- 6 high priority actions closeout target date <3 month
- 58 medium priority action closeout target date <6 month
- (+ 61 low priority actions closeout target date <12 month)

Specific actions required:

- 13 anti-vibration brace drawings for fabrication, installation and subsequent operator check measurements
- 11 engineering actions
- 6 engineering actions followed by subsequent operator check measurements
- 18 check measurements
- 18 locations recommended for detailed vibration measurement survey under representative flow conditions

AIV results and recommendations

Identified 65 risk areas on flare piping and common 42" header; welded tee, side branch and pipe support connections

- 10 sliding shoe pipe supports on 42" header cleared, based on detailed FEA modeling
- 11 connections require visual inspection to confirm appropriate bracing has been installed
- 5 require valve diffuser performance if better than assumed then can be removed from list
- 6 weldolets require bolted or welded 2-plane braces installed
- 3 fabricated tees with repads on 12" local header to be extended to full encirclement wraps
- 15 sliding shoe pipe supports on 42" header to be extended to full encirclement wraps
- 15 other tee connections with repads on 42" header to be extended to full encirclement wraps

Conclusion

- Vibration is a real threat that should be included in an effective integrity program
- Tools enable asset owners to ensure current standards (EI) are applied
- Vibration screening tools are available that implement the current standards (EI) to quickly identify where attention is needed
- Required data is most likely already compiled for your existing RBI program
- Vibration can be managed proactively, and this allows owners to prevent costly fatigue failures

Thank you

Michael Cyca mike.cyca@woodplc.com Vibration dynamics and noise Wood

woodplc.com/vdn

